Dr .Atifc Rizwan |Machine Learning Award | Best Researcher Award
Dr .Atif Rizwan ,Kyunghee University,South Korea
Education:
- PhD in Computer Engineering
Jeju National University, Jeju-si, Republic of Korea
CGPA: 4.39/4.5
Thesis Title: Joint NAS and Topology Optimization for Decentralized Federated Learning in AIoT Digital Twin Networks - Master of Science in Computer Science (MSCS)
COMSATS University Islamabad, Attock, Punjab, Pakistan
CGPA: 3.63/4.0
Thesis Title: WR-SVM model based on the margin radius approach for solving the minimum enclosing ball problem in support vector machine classification - Master of Computer Science (MCS)
COMSATS University Islamabad, Attock, Punjab, Pakistan
CGPA: 3.83/4.0 - Bachelor of Science (BSC)
University of the Punjab, Lahore, Punjab, Pakistan
Marks: 519/800
Professional Experience :
- Visiting Lecturer
COMSATS University Islamabad, Attock Campus
Spring 2018 – Spring 2020
Responsibilities: Leading programming labs in Java, Python, and C#, guiding students in industry projects.
Technical Skills:
- Programming: Python, Java, C++, C#
- Frameworks & CMS: Django, Flask, Codeignitor, MVC
- Web Development: HTML, CSS, Bootstrap, JavaScript, jQuery, PhP
- Databases: SQL, MySQL, SQLite
- Software: Spyder, Jupyter, MATLAB, Sublime Text, PyCharm, Visual Studio, Anaconda, Dreamweaver, Eclipse, NetBeans
- Protocols: IEEE 802.11, HTTP, CoAP, MQTT, TCP/IP
- Operating Systems: Ubuntu, Raspbian, Windows
Research Object:
- Neural Architecture Search for Resource Constraint Devices in DFL
- Optimization of Topology in DFL
- Digital Twin for Decentralized Federated Learning
- Personalized Hierarchical Heterogeneous FL
- Digital Twin for Centralized Federated Learning
- Sampling-Based Model Consolidation for Attack Prevention in Federated Learning
- Indoor Environment Optimization Techniques using Deep Learning in Edge Computing Environments
- Optimal location for Water Drilling
- Self Optimal Environment Control with minimum energy consumption for Greenhouse environment
- Realtime Situation Reporting using YOLO
Development Projects:
- Developed more than ten android applications using Java, XML, SQL, Firebase.
- Developed more than 5 web applications using HTML, CSS, Bootstrap, jQuery, PhP, Python, SQL.
Publications:
- Khan, A. N., Rizwan, A., Ahmad, R., Jin, W., Khan, Q. W., Lim, S., & Kim, D. H. (2023). Hetero-FedIoT: A Rule-Based Interworking Architecture for Heterogeneous Federated IoT Networks. IEEE Internet of Things Journal.
- Rizwan, A., Ahmad, R., Khan, A. N., Xu, R., & Kim, D. H. (2023). Intelligent digital twin for federated learning in AIoT networks. Internet of Things, 100698.
- Khan, A. N., Rizwan, A., Ahmad, R., Khan, Q. W., Lim, S., & Kim, D. H. (2023). A precision-centric approach to overcoming data imbalance and non-IIDness in federated learning. Internet of Things, 100890.
- Khan, Q. W., Kim, B. W., Ahmed, R., Rizwan, A., Khan, A. N., Kim, K., & Kim, D. H. (2023). Predictive Modeling of Water Table Depth, Drilling Duration, and Soil Layer Classification using Adaptive Ensemble Learning for Cost-Effective Percussion Water Borehole Drilling. IEEE Access.
- Shah, S. M. A. H., Shah, S. F. H., Ullah, A., Rizwan, A., Atteia, G., & Alabdulhafith, M. (2023). Arabic Sentiment Analysis and Sarcasm Detection using Probabilistic Projections Based Variational Switch Transformer. IEEE Access.
- Khan, A. N., Rizwan, A., Ahmad, R., & Kim, D. H. (2023). An OCF-IoTivity enabled smart-home optimal indoor environment control system for energy and comfort optimization. Internet of Things, 22, 100712.
- Khan, A. N., Kim, B. W., Rizwan, A., Ahmad, R., Iqbal, N., Kim, K., & Kim, D. H. (2023). A New Method for Determination of Optimal Borehole Drilling Location Considering Drilling Cost Minimization and Sustainable Groundwater Management. ACS Omega.
- Rizwan, A., Khan, A. N., Ahmad, R., & Kim, D. H. (2022). Optimal environment control mechanism based on OCF connectivity for efficient energy consumption in greenhouse. IEEE Internet of Things Journal, 10(6), 5035-5049.
Atifc Rizwan | Machine Learning Award |Best Researcher Award