Zhen Lu | Spatial Structures | Best Researcher Award

Dr. Zhen Lu | Spatial Structures | Best Researcher Award

postdoctor.Ā  Tsinghua University,China.

Dr. Zhen Lu is a postdoctoral researcher at Tsinghua University, China. His research focuses on [specific research areas, if known], contributing to advancements in [relevant field, e.g., renewable energy, AI, materials science, etc.]. He has published in leading journals and actively collaborates on interdisciplinary projects.

Publication Profile

Scopus

Academic and Professional Background :

Zhen Lu is a dedicated researcher specializing in the mechanical properties of steel structures and long-span spatial structures. With a strong academic foundation, Zhen has published over ten high-impact papers in reputed journals such as the Journal of Building Engineering and the Journal of Constructional Steel Research. His expertise and contributions to structural engineering have earned him two national or provincial-ministerial level academic awards, reflecting his excellence in research and innovation.

Research and Innovations:

Zhen Lu has actively participated in nine completed or ongoing research projects, contributing significantly to the field of long-span spatial structures. His research has gained recognition, with a citation index of 82 in renowned scientific databases. Apart from academic research, he has also engaged in nine consultancy and industry-sponsored projects, demonstrating a strong connection between theoretical advancements and real-world applications.,As an author, he has published one book with an ISBN and contributed to the development of new knowledge in the field. Additionally, he holds one patent, which highlights his innovative approach to solving technical challenges in structural engineering. His publication record includes ten SCI and Scopus-indexed journal papers.,Zhen has actively collaborated on significant projects, including research for a large-scale stadium, enhancing practical applications of his theoretical findings. He is a member of prestigious professional organizations such as the Association for Spatial Structures and the China Steel Construction Society, reinforcing his commitment to continuous learning and collaboration.

Areas of Research :

Zhen Lu’s research primarily focuses on the static performance of long-span spatial structures, seismic response analysis of long-span spatial structures, and design methods for steel structures. His work aims to improve the safety, durability, and efficiency of large-scale steel structures, ensuring their resilience under various environmental and load conditions.

Awards:

Zhen Lu has received two prestigious national or provincial-ministerial level academic awards for his outstanding contributions to research in structural engineering.

 

Publication :

Shaking table test on suspend-dome structure with the center-hung scoreboard under three-dimensional seismic
Ā Conclusion

Zhen Lu is a strong candidate for the Best Researcher Award based on significant research contributions in structural engineering, impactful journal publications, industry projects, and innovative design methodologies. The practical applications of their research, especially in long-span spatial structures and steel structures, make a compelling case.

 

 

Igor Artyukov | Carbon composites| Best Researcher Award

Dr . Igor Artyukov | Carbon composites| Best Researcher Award

Ā Dr . Igor Artyukov ,P.N. Lebedev Physical Institute RAS,Russia

Dr. Igor Artyukov is a distinguished scientist at the P.N. Lebedev Physical Institute of the Russian Academy of Sciences (RAS) in Russia. Specializing in the field of physics, Dr. Artyukov’s research contributions span various areas within physical sciences. The P.N. Lebedev Physical Institute, renowned for its pioneering research in physics, provides a robust platform for his work. Dr. Artyukov’s affiliation with this prestigious institution highlights his standing in the scientific community and his commitment to advancing knowledge in his field.

 

Professional Profiles:

Scopus

Education šŸŽ“

University: National Research Nuclear University MEPhI – Moscow Engineering & Physics Institute (Moscow, Russia)

  • Year of Graduation: 1988 (Honors Diploma)
  • Degree: M.Sc.
  • Faculty: Special Faculty of Physics (SFF)
  • Specialty: Solid State Physics and Quantum Electronics

University: National Research Nuclear University MEPhI – Moscow Engineering & Physics Institute (Moscow, Russia)

  • Year of Graduation: 1992
  • Degree: N/A (Post-graduate education diploma)
  • Specialty: Radiophysics

Management Training and Courses

  • Project Manager Training by the US Industry Coalition (USIC): Minsk, Belorussia, 1999.
  • Project Manager Training by the US Civil R&D Foundation (CRDF) and the International Science and Technology Center (ISTC): Moscow, 2001-2005 (on a regular basis).

Scientific Degree

Organization: P.N. Lebedev Physical Institute of the Russian Academy of Sciences (Moscow, Russia)

  • Degree: Ph.D.
  • Year: 1993
  • Specialty: Optics
  • Ph.D. Thesis: “X-ray Optics for Microscopy and Lithography”

Awards:

  • Honors Diploma: Graduation from the Moscow Engineering & Physics Institute, 1988.
  • Pavlov Award and Bronze Pin: International Academy of Sciences ISCD (Commission for Ecology and Healthcare, Munich, Germany), 2000.
  • Basov Award:
    • For ā€œDevelopment and application of the reflective optics for the wavelength range 35-60 nmā€ (P.N. Lebedev Physical Institute of the Russian Academy of Sciences), 2007.
    • For ā€œDesign and simulation of an X-ray beam for laser-electron generator in material and life sciencesā€ (P.N. Lebedev Physical Institute of the Russian Academy of Sciences), 2017.
    • For ā€œDirect and Inverse diffraction problems for in-vlines surfaces in application for X-ray microscopy and lithographyā€ (P.N. Lebedev Physical Institute of the Russian Academy of Sciences), 2021.

Fields of Expertise:

Theoretical Studies:

  • Design and simulation of optical systems
  • Optical design of high-resolution optical systems for X-ray and EUV lithography and microscopy
  • Monte Carlo simulation of optical and physical processes
  • Development of laser-electron X-ray sources based on inverse Compton scattering
  • Development of X-ray/EUV reflective optical systems for scientific applications

Experimental Studies:

  • Investigation of biological and composite materials with methods of X-ray microtomography
  • X-ray fluorescence spectromicroscopy using synchrotron radiation
  • Soft X-ray/EUV imaging with laser plasma X-ray source and multilayer mirrors

Supervising:

  • K.M. Krymsky: M.Sc., Ph.D. student
  • S.A. Romanova: M.Sc., Ph.D. student
  • M.A. Zotova: M.Sc. student
  • K.V. Gorodnischev: M.Sc. student
  • N.N. Irtuganov: M.Sc, Ph.D. student
  • I.D. Mikheev: B.Sc. student
  • D.A. Paneke: B.Sc., M.Sc., Ph.D. student
  • A.A. Danilov: B.Sc., M.Sc., Ph.D. student

Publications šŸ“š

    1. A. V. Vinogradov, I. A. Artyukov, S. S. Borisova, N. N. Zorev, I. V. Kozhevnikov, I. F. Mikhailov, S. I. Sagitov, and A. I. Fedorenko, “Investigation Of Superpolished Surfaces By X-Ray Scattering,” Proceedings Of SPIE – The International Society For Optical Engineering 1140, 490-501 (1989).
    2. I. Artyukov, A. Vinogradov, and I. Kozhevnikov, “Efficiency Of Grazing-Incidence Optics – The Spiral Collimator,” Applied Optics 30, 4154-4157 (1991).
    3. I. Artyukov, A. Vinogradov, And I. Kozhevnikov, “Maximum Efficiency Of Moving Incidence X-Ray Optics – Spiral Collimators,” Izvestiya Akademii Nauk Sssr Seriya Fizicheskaya 55, 824-828 (1991).
    4. I. Artyukov, L. Balakireva, F. Bijkerk, A. Vinogradov, N. Zorev, I. Kozhevnikov, V. Kondratenko, O. Ogurtsov, A. Ponomarenko, and A. Fedorenko, “Projection X-Ray-Lithography On The Basis Of Point Sources,” Kvantovaya Elektronika 19, 114-127 (1992).
    5. I. Artyukov, A. Vinogradov, And S. Suckewer, “Ray Tracing Computer-Simulation For X-Ray Applications,” In Ultrashort-Wavelength Lasers (1992), Pp. 161-165.
    6. I. A. Artyukov, A. I. Fedorenko, V. V. Kondratenko, S. A. Yulin, And A. V. Vinogradov, “Soft X-Ray Submicron Imaging Experiments With Nanosecond Exposure,” Optics Communications 102, 401-406 (1993).
    7. B. Alaudinov, I. Artyukov, V. Asadchikov, A. Karabekov, And I. Kozhevniikov, “An Optical-Model Of A Surface In The X-Ray Range,” Kristallografiya 39, 605-616 (1994).
    8. I. Artioukov, I. Kozhevnikov, And F. Abeles, “Effects Of Near-Surface Transition Layer On X-Ray Reflection And Scattering,” In Optical Interference Coatings, Pts 1 And 2 (1994), Pp. 692-703.
    9. I. Artyukov, A. Vinogradov, A. Fedorenko, V. Kondratenko, S. Yulin, And S. Suckewer, “Soft-X-Ray Submicron Imaging Experiments With Nanosecond Exposure,” In Ultrashort Wavelength Lasers Ii (1994), Pp. 190-197.
    10. I. A. Artyukov, A. Y. Karabekov, I. V. Kozhevnikov, B. M. Alaudinov, And V. E. Asadchikov, “Experimental Observation Of The Near Surface Layer Effects On X-Ray Reflection And Scattering,” Physica B: Physics Of Condensed Matter 198, 9-12 (1994).
    11. I. Artioukov, A. Vinogradov, V. Asadchikov, Y. Kasyanov, R. Serov, A. Fedorenko, V. Kondratenko, and S. Yulin, “Schwarzschild Soft-X-Ray Microscope For Imaging Of Nonradiating Objects,” Optics Letters 20, 2451-2453 (1995).
    12. I. A. Artioukov And I. V. Kozhevnikov, “Effects Of Near-Surface Transition Layer On X-Ray Reflection And Scattering,” In Proceedings Of SPIE – The International Society For Optical Engineering, 1995), 154-175.
    13. I. A. Artyukov, V. E. Asadchikov, A. V. Vinogradov, Y. S. Kas?Yanov, V. V. Kondratenko, R. V. Serov, A. I. Fedorenko, And S. A. Yulin, “Reflective Soft X-Ray Microscope For The Investigation Of Objects Illuminated By Laser-Plasma Radiation,” Quantum Electronics 25, 919-922 (1995).
    14. I. A. Artioukov, V. E. Asadchikov, And I. V. Kozhevnikov, “Effects Of A Near-Surface Transition Layer On X-Ray Reflection And Scattering,” Journal Of X-Ray Science And Technology 6, 223-243 (1996).
    15. I. A. Artyukov, A. V. Vinogradov, V. V. Kondratenko, A. I. Fedorenko, And S. A. Yulin, “Soft X-Ray Imaging Of Submicron Structures,” Russian Microelectronics 25, 48-53 (1996).