Sajad Rezvani | Computer vision | Excellence in Research

 

Mr Sajad Rezvani | Computer vision | Excellence in Research

Shahrood University of Technology , Iran

Sadjad Rezvani is a highly qualified candidate for the Research for Excellence in Research award. His impressive academic achievements, impactful research contributions, technical expertise, and leadership in mentoring make him a strong contender. His work in masked face recognition, medical image analysis, and image segmentation reflects both the depth and relevance of his research in today’s rapidly evolving tech landscape.

Publication Profile
scopus

Education :

Sadjad Rezvani holds a Master of Science in Computer Engineering with a specialization in Artificial Intelligence from Shahrood University of Technology, Iran. He completed his master’s degree between September 2020 and September 2022, graduating with a GPA of 4/4 (18.59/20). His thesis was titled “Masked Face Recognition Using Deep Learning,” under the guidance of Professor Mansoor Fateh. Prior to this, Sadjad earned his Bachelor of Science in Computer Engineering, specializing in Software Engineering, from Shahrood University of Technology, completing his degree between September 2015 and September 2019 with a GPA of 3.53/4 (16.92/20). His undergraduate thesis was titled “Profiling Web Applications to Improve Intrusion Detection,” supervised by Professor Mohsen Rezvani.

Professional Experience:

Sadjad has practical experience as a Computer Vision Software Engineer in several industries. He worked at Hookan Salt Factory in Shiraz, Iran, from November 2020 to September 2021, where he contributed to the development of a Salt Crack Sorting Machine. In this role, he employed advanced image processing techniques to detect salt impurities in real-time, utilizing tools such as OpenCV, Python, C#, and C++. Additionally, he worked at Shahaab, CO from June 2019 to December 2023 on a Plate Recognition Software project, where he contributed to a system that recognized license plates using CCTV camera data. His work involved maintaining and improving the software using C#, SQL, and other related technologies.

Research Skills:

Sadjad is highly skilled in programming languages such as Python, C++, and C#, and has a strong background in Machine Learning frameworks including PyTorch, TensorFlow, and Scikit-Learn. He is proficient in Computer Vision tools like OpenCV and has experience with databases such as Microsoft SQL Server and MySQL. His technical expertise also extends to advanced image processing, AI for medical diagnosis, and deep learning-based solutions for real-world applications.

Research Focus :

Sadjad’s research interests include Machine Learning (ML), Deep Learning (DL), Generative AI (GenAI), Medical Image Analysis, Limited Data Solutions, and Domain Adaptation. He has contributed to several journal publications, such as the development of ABANet: Attention Boundary-Aware Network for Image Segmentation (2024) and a paper on Single Image Denoising via a New Lightweight Learning-Based Model (2024), among others. His academic research also includes the application of deep learning models for lung CT image segmentation and innovations in masked face recognition using deep learning.

 

Awards :

Sadjad has received recognition for his achievements, including being a member of Iran’s National Elites Foundation in 2023 and being the third-ranked student in his Master of Science program. His certifications include AI for Medical Diagnosis from DeepLearning.AI (Coursera, 2023), Python Project for Data Science from IBM (Coursera, 2022), and specialization courses in Generative Adversarial Networks (GANs) and Machine Learning from Stanford University.

Honours and Awards

  • Member of Iran’s National Elites Foundation, 2023

  • Third-ranked student in the Master of Science in Computer Science program, 2022

 

Publication : 

 

    • Rezvani, S., Fateh, M., & Khosravi, H. (2024). ABANet: Attention Boundary-Aware Network for Image Segmentation. Expert Systems, e13625. [Published May 2024]

    • Rezvani, S., Soleymani Siahkar, F., Rezvani, Y., Alavi Gharahbagh, A., & Abolghasemi, V. (2024). Single Image Denoising via a New Lightweight Learning-Based Model. IEEE Access, August 2024.

    • Rezvani, S., Fateh, M., Fateh, A., & Jalali, Y. (2024). FusionLungNet: Multi-scale Fusion Convolution with Refinement Network for Lung CT Image Segmentation. Biomedical Signal Processing and Control, Revised Sep 2024.

conclusion:

  • Sadjad’s overall profile is well-rounded with strengths across research, academia, technical skills, and professional experience.

  • Continued focus on expanding publication reach, collaboration, and public speaking could further elevate his visibility and impact in the research community.

  • With his dedication and achievements, Sadjad is well-positioned for recognition in research excellence.

In conclusion, Sadjad is a strong candidate for the award, and with a few adjustments in outreach and collaboration, he could continue to make significant strides in the research world.

 

Saba Inam | machine learning | Women Researcher Award

Dr.Saba Inam |machine learning| Women Researcher Award

Dr Saba InamFatima Jinnah women university, The Mall, Rawalpindi, Pakistan.

Dr. Saba Inam is a lecturer in the Department of Mathematical Sciences at Fatima Jinnah Women University in Rawalpindi, Pakistan. She earned her PhD in Algebraic Cryptography from the Capital University of Science and Technology, completing her studies between February 2014 and January 2019. Her research interests include Algebraic Number Theory, Algebraic Cryptography, Applied Cryptography, image encryption, Cloud Computing, Machine Learning, and Deep Learning. Dr. Inam has contributed to over 20 publications, accumulating 247 citations, and her work has garnered more than 3,367 reads. Notably, she co-authored the article “An efficient image encryption algorithm using 3D-cyclic Chebyshev map and elliptic curve,” published in November 2024.

Publication Profile

Google Scholar

Orcid

Education :

Dr. Saba Inam holds a PhD in Mathematics from Capital University of Science and Technology (CUST), Islamabad (2019). She completed her MS in Mathematics from COMSATS Institute of Information Technology, Islamabad, in 2007 with a CGPA of 3.6/4, achieving 1st Division. She earned her M.Sc. in Mathematics from Quaid-i-Azam University, Islamabad (2005), and her B.Sc. in Mathematics (Maths A, Maths B, Stats) from the University of the Punjab (2003), both with 1st Division.

Experience :

Dr. Inam has extensive academic and research experience. Since September 2007, she has been serving as a Lecturer in Mathematics at Fatima Jinnah Women University, Rawalpindi. She also held the position of Incharge, Department of Mathematical Sciences from August 2016 to January 2018. Before that, she worked as a Research Associate at COMSATS Institute of Information Technology, Islamabad, from March to August 2007.

Research Focus :

Dr. Inam’s research interests span across multiple domains, including:

Cryptography & Security: Algebraic Cryptography, Cryptology, CryptanalysisAI & Data Security: Image Encryption, Blockchain, IoT, Deep Learning, Machine LearningMathematical Sciences: Fluid Mechanics, Geometric Function Theory.

 

Awards:

Dr. Inam’s academic excellence has been recognized through various awards and honors:

Scholarship – Capital University of Science and Technology (CUST), Islamabad (2013-2018)Dean’s Roll of Honor – Received twice during PhD courseworkDiploma in Academic Excellence in Discrete Mathematics – Abdul Salam School of Mathematical Sciences, GC University, Lahore (2012)Scholarship – COMSATS Institute of Information Technology, Islamabad (2005-2007)

Skills:

Dr. Inam possesses expertise in:Programming & Computational Tools: Matlab, Python, Mathematica, APCoCoA, Scientific Workplace, LaTeXOffice & Documentation: Proficient in Microsoft Office Suite,Dr. Saba Inam continues to contribute significantly to the fields of cryptography, image encryption, and mathematical security frameworks, with a strong focus on deep learning and blockchain applications.

Publication :