Rashad Abdel-Baky |Topology| Best Researcher Award

Prof Dr. Rashad Abdel-Baky |Topology| Best Researcher Award

Prof. Sciences Faculty for Girls, University of Jeddah,Egypt

Prof. Dr. Rashad Abdel-Baky is a distinguished academic at the Faculty of Sciences for Girls, University of Jeddah, Egypt. He has extensive experience in the field of science and education, with a focus on research and teaching. His contributions to academic development, particularly in the sciences, have been impactful at both the national and international levels. Prof. Dr. Abdel-Baky has been involved in various educational initiatives and has played a key role in fostering the growth of his academic department.

Summary:

Dr. Jennifer Lippincott-Schwartz’s pioneering work in cellular imaging technologies exemplifies the kind of research excellence celebrated by the Research for Research and Development Excellence Award in CAD. Her leadership and scientific impact are immense, with significant contributions to both the understanding of cell biology and the development of innovative imaging tools. The combination of technical skill, visionary leadership, and high-impact research makes her a strong candidate for this award.

 

Professional Profiles:

Scopus

🎓 Education :

Jennifer Lippincott-Schwartz holds a Ph.D. in Biochemistry from The Johns Hopkins University, Baltimore, Maryland (1986). She earned a Master’s degree in Biology from Stanford University, Palo Alto, California (1979), and a Bachelor of Arts with Honors in Psychology and Philosophy from Swarthmore College, Swarthmore, Pennsylvania (1974).

 

🏢 Experience:

Lippincott-Schwartz has a distinguished career at the Howard Hughes Medical Institute’s Janelia Research Campus, where she has served as Senior Group Leader and Head of the 4D Cellular Physiology Research Area since 2016. Previously, she was a Distinguished NIH Investigator and Chief of the Section on Organelle Biology at the National Institutes of Health from 2000 to 2016. She started her tenure at NIH in 1990 as a Postdoctoral Fellow, later becoming a Tenured Investigator.

🛠️Skills:

Lippincott-Schwartz is renowned for her expertise in advanced imaging technologies such as photoactivation, FRAP, single-particle tracking, PALM, FIB-SEM, lattice light sheet microscopy, and TIRF-SIM. She has made significant contributions to the study of subcellular dynamics and organelle behavior, particularly in the context of cell function and disease.

 

Research Focus :

Lippincott-Schwartz’s major research interests involve the development and use of advanced imaging technologies to study complex cell behaviors and the organization of subcellular organelles. Her research focuses on dynamic processes such as cell crawling, polarity, cytokinesis, viral budding, and intercellular transfer. Additionally, she investigates the organization and behavior of organelles, including the ER, mitochondria, Golgi apparatus, endosomes, lysosomes, lipid droplets, actomyosin filaments, microtubules, autophagosomes, peroxisomes, and cilia, under both healthy and pathological conditions.

 

🔬Awards:

Throughout her career, Lippincott-Schwartz has received numerous prestigious awards, including the Dickson Prize (2024), the E.B. Wilson Medal (2020), and the Honorary Doctorate from the University of Southern Denmark (2020). She has been elected to the American Academy of Arts and Sciences (2019) and the National Academy of Sciences (2008). Her work in fluorescent protein imaging, including the creation of photoactivable GFP, earned her recognition as an AAAS Fellow in 2008. Other notable accolades include the Newcomb Cleveland Prize, the Van Deenen Medal, and the Feodor Lynen Medal.

 

Conclusion:

Dr. Lippincott-Schwartz’s work in advancing imaging technology is highly relevant to the field of CAD, particularly when considering the ways in which innovation in visualization and design can be applied to biological systems. The next step in her career could involve a more explicit intersection with computational design tools, enhancing the scale and scope of her groundbreaking research in cell biology.

 Publications:

  • Permanent deconstruction of intracellular primary cilia in differentiating granule cell neurons
    • Authors: Ott, C.M., Constable, S., Nguyen, T.M., Lippincott-Schwartz, J., Mukhopadhyay, S.
    • Journal: Journal of Cell Biology
    • Year: 2024
    • Citations: 0

 

  • YAP condensates are highly organized hubs
    • Authors: Hao, S., Lee, Y.J., Benhamou Goldfajn, N., Sukenik, S., Cai, D.
    • Journal: iScience
    • Year: 2024
    • Citations: 3
  • The physical and cellular mechanism of structural color change in zebrafish
    • Authors: Gur, D., Moore, A.S., Deis, R., Hammer, J.A., Lippincott-Schwartz, J.
    • Journal: Proceedings of the National Academy of Sciences of the United States of America
    • Year: 2024
    • Citations: 1

 

  • Ultrastructural differences impact cilia shape and external exposure across cell classes in the visual cortex
    • Authors: Ott, C.M., Torres, R., Kuan, T.-S., da Costa, N.M., Lippincott-Schwartz, J.
    • Journal: Current Biology
    • Year: 2024
    • Volume: 34(11)
    • Pages: 2418–2433.e4
    • Citations: 3

 

  • COPII with ALG2 and ESCRTs control lysosome-dependent microautophagy of ER exit sites
    • Authors: Liao, Y.-C., Pang, S., Li, W.-P., Xu, C.S., Lippincott-Schwartz, J.
    • Journal: Developmental Cell
    • Year: 2024
    • Volume: 59(11)
    • Pages: 1410–1424.e4
    • Citations: 2

 

  • Correction to: Targeting LIPA independent of its lipase activity is a therapeutic strategy in solid tumors via induction of endoplasmic reticulum stress
    • Authors: Liu, X., Viswanadhapalli, S., Kumar, S., Ahn, J.-M., Raj, G.V.
    • Journal: Nature Cancer
    • Year: 2024
    • Citations: 0

 

  • Fluorescence complementation-based FRET imaging reveals centromere assembly dynamics
    • Authors: Dou, Z., Liu, R., Gui, P., Yao, X., Liu, X.
    • Journal: Molecular Biology of the Cell
    • Year: 2024
    • Article ID: ar51
    • Citations: 2

 

  • Host ZCCHC3 blocks HIV-1 infection and production through a dual mechanism
    • Authors: Yi, B., Tanaka, Y.L., Cornish, D., Saito, A., Yoshimura, S.H.
    • Year: 2024
    • Article ID: 109107
    • Citations: 1

 

  • CSPP1 stabilizes microtubules by capping both plus and minus ends
    • Authors: Wang, Z., Wang, W., Liu, S., Liu, X., Yao, X.
    • Journal: Journal of Molecular Cell Biology
    • Year: 2024
    • Volume: 16(2)
    • Citations: 1

 

  • Motion of VAPB molecules reveals ER–mitochondria contact site subdomains
    • Authors: Obara, C.J., Nixon-Abell, J., Moore, A.S., Blackstone, C., Lippincott-Schwartz, J.
    • Journal: Nature
    • Year: 2024
    • Citations: 12

 

Jennifer Lippincott-Schwartz |simulation | Research and Development Excellence Award in CAD

Dr. Jennifer Lippincott-Schwartz |simulation | Research and Development Excellence Award in CAD

Ph.D,Howard Hughes Medical Institute Janelia Farm Research Campus,United States

Dr. Jennifer Lippincott-Schwartz is a prominent scientist and researcher at the Howard Hughes Medical Institute’s Janelia Farm Research Campus in the United States. With a Ph.D. in cell biology, her work focuses on the dynamics of cellular processes, particularly how molecules within cells move and interact. She is widely recognized for her pioneering research in fluorescence microscopy, which has contributed significantly to the field of cell biology by enabling more detailed and dynamic imaging of cellular structures. Her innovations have advanced understanding of the molecular mechanisms underlying cellular function and disease.

Summary:

Dr. Jennifer Lippincott-Schwartz’s pioneering work in cellular imaging technologies exemplifies the kind of research excellence celebrated by the Research for Research and Development Excellence Award in CAD. Her leadership and scientific impact are immense, with significant contributions to both the understanding of cell biology and the development of innovative imaging tools. The combination of technical skill, visionary leadership, and high-impact research makes her a strong candidate for this award.

 

Professional Profiles:

Scopus

🎓 Education :

Jennifer Lippincott-Schwartz holds a Ph.D. in Biochemistry from The Johns Hopkins University, Baltimore, Maryland (1986). She earned a Master’s degree in Biology from Stanford University, Palo Alto, California (1979), and a Bachelor of Arts with Honors in Psychology and Philosophy from Swarthmore College, Swarthmore, Pennsylvania (1974).

 

🏢 Experience:

Lippincott-Schwartz has a distinguished career at the Howard Hughes Medical Institute’s Janelia Research Campus, where she has served as Senior Group Leader and Head of the 4D Cellular Physiology Research Area since 2016. Previously, she was a Distinguished NIH Investigator and Chief of the Section on Organelle Biology at the National Institutes of Health from 2000 to 2016. She started her tenure at NIH in 1990 as a Postdoctoral Fellow, later becoming a Tenured Investigator.

🛠️Skills:

Lippincott-Schwartz is renowned for her expertise in advanced imaging technologies such as photoactivation, FRAP, single-particle tracking, PALM, FIB-SEM, lattice light sheet microscopy, and TIRF-SIM. She has made significant contributions to the study of subcellular dynamics and organelle behavior, particularly in the context of cell function and disease.

 

Research Focus :

Lippincott-Schwartz’s major research interests involve the development and use of advanced imaging technologies to study complex cell behaviors and the organization of subcellular organelles. Her research focuses on dynamic processes such as cell crawling, polarity, cytokinesis, viral budding, and intercellular transfer. Additionally, she investigates the organization and behavior of organelles, including the ER, mitochondria, Golgi apparatus, endosomes, lysosomes, lipid droplets, actomyosin filaments, microtubules, autophagosomes, peroxisomes, and cilia, under both healthy and pathological conditions.

 

🔬Awards:

Throughout her career, Lippincott-Schwartz has received numerous prestigious awards, including the Dickson Prize (2024), the E.B. Wilson Medal (2020), and the Honorary Doctorate from the University of Southern Denmark (2020). She has been elected to the American Academy of Arts and Sciences (2019) and the National Academy of Sciences (2008). Her work in fluorescent protein imaging, including the creation of photoactivable GFP, earned her recognition as an AAAS Fellow in 2008. Other notable accolades include the Newcomb Cleveland Prize, the Van Deenen Medal, and the Feodor Lynen Medal.

 

Conclusion:

Dr. Lippincott-Schwartz’s work in advancing imaging technology is highly relevant to the field of CAD, particularly when considering the ways in which innovation in visualization and design can be applied to biological systems. The next step in her career could involve a more explicit intersection with computational design tools, enhancing the scale and scope of her groundbreaking research in cell biology.

 Publications:

  • Permanent deconstruction of intracellular primary cilia in differentiating granule cell neurons
    • Authors: Ott, C.M., Constable, S., Nguyen, T.M., Lippincott-Schwartz, J., Mukhopadhyay, S.
    • Journal: Journal of Cell Biology
    • Year: 2024
    • Citations: 0

 

  • YAP condensates are highly organized hubs
    • Authors: Hao, S., Lee, Y.J., Benhamou Goldfajn, N., Sukenik, S., Cai, D.
    • Journal: iScience
    • Year: 2024
    • Citations: 3
  • The physical and cellular mechanism of structural color change in zebrafish
    • Authors: Gur, D., Moore, A.S., Deis, R., Hammer, J.A., Lippincott-Schwartz, J.
    • Journal: Proceedings of the National Academy of Sciences of the United States of America
    • Year: 2024
    • Citations: 1

 

  • Ultrastructural differences impact cilia shape and external exposure across cell classes in the visual cortex
    • Authors: Ott, C.M., Torres, R., Kuan, T.-S., da Costa, N.M., Lippincott-Schwartz, J.
    • Journal: Current Biology
    • Year: 2024
    • Volume: 34(11)
    • Pages: 2418–2433.e4
    • Citations: 3

 

  • COPII with ALG2 and ESCRTs control lysosome-dependent microautophagy of ER exit sites
    • Authors: Liao, Y.-C., Pang, S., Li, W.-P., Xu, C.S., Lippincott-Schwartz, J.
    • Journal: Developmental Cell
    • Year: 2024
    • Volume: 59(11)
    • Pages: 1410–1424.e4
    • Citations: 2

 

  • Correction to: Targeting LIPA independent of its lipase activity is a therapeutic strategy in solid tumors via induction of endoplasmic reticulum stress
    • Authors: Liu, X., Viswanadhapalli, S., Kumar, S., Ahn, J.-M., Raj, G.V.
    • Journal: Nature Cancer
    • Year: 2024
    • Citations: 0

 

  • Fluorescence complementation-based FRET imaging reveals centromere assembly dynamics
    • Authors: Dou, Z., Liu, R., Gui, P., Yao, X., Liu, X.
    • Journal: Molecular Biology of the Cell
    • Year: 2024
    • Article ID: ar51
    • Citations: 2

 

  • Host ZCCHC3 blocks HIV-1 infection and production through a dual mechanism
    • Authors: Yi, B., Tanaka, Y.L., Cornish, D., Saito, A., Yoshimura, S.H.
    • Year: 2024
    • Article ID: 109107
    • Citations: 1

 

  • CSPP1 stabilizes microtubules by capping both plus and minus ends
    • Authors: Wang, Z., Wang, W., Liu, S., Liu, X., Yao, X.
    • Journal: Journal of Molecular Cell Biology
    • Year: 2024
    • Volume: 16(2)
    • Citations: 1

 

  • Motion of VAPB molecules reveals ER–mitochondria contact site subdomains
    • Authors: Obara, C.J., Nixon-Abell, J., Moore, A.S., Blackstone, C., Lippincott-Schwartz, J.
    • Journal: Nature
    • Year: 2024
    • Citations: 12

 

Tesfaye Zema | Simulation | Best Researcher Award

Mr.Tesfaye Zema | Simulation | Best Researcher Award

Mr.Tesfaye Zema ,Wolaita Sodo University, Ethiopia, Ethiopia

Mr. Tesfaye Zema is a distinguished academic affiliated with Wolaita Sodo University in Ethiopia. With a robust background in [specific field or discipline, if known], Mr. Zema is known for his contributions to [mention any notable research, teaching, or projects]. His work at the university underscores his commitment to advancing knowledge and fostering academic excellence within the Ethiopian educational landscape.

Summary:

Prof. Fahrettin Ozturk seems highly qualified for the Best Researcher Award based on his extensive academic and professional achievements. Here’s a summary and conclusion about his suitability:

 

Professional Profiles:

Google scholar 

Orcid

Education :

Mr. Tesfaye Zema earned his Master of Science in Mechanical Engineering with a specialization in Thermal Engineering from Wolaita Sodo University in 2023. His thesis, titled “Experimental Investigation on Performance Enhancement of VCR System Using Nano-Refrigerant (R134a/ZrO2) at Steady-State Conditions,” received an excellent rating and reflects his deep expertise in advanced thermal systems. He completed his Bachelor of Science in Mechanical Engineering at the same institution in 2017, graduating with a CGPA of 3.78.

Experience:

From December 5, 2019, to December 30, 2023, Mr. Zema served as a Lecturer in Mechanical Engineering with a focus on HVAC/R systems at Wolaita Sodo University. His responsibilities included teaching courses such as Engineering Dynamics, Fluid Mechanics, and Engineering Thermodynamics, as well as supervising student research and providing academic guidance. He was also involved in various research activities, conferences, and community service projects.

Skills:

  • Technical Skills: Proficient in 2D & 3D Modeling, MS Word, PowerPoint, Excel, CATIA V5, Ansys, Referop, and MATLAB.
  • Languages: Fluent in English (C1 Professional) and Amharic (Mother Tongue).
  • Social Skills: Known for a positive attitude towards work, result-oriented output, and excellent communication and interpersonal skills.

Awards and Honors:

Mr. Zema was honored with the “Wolaita Sodo University” Scholarship Award for his MSc in Thermal Engineering, recognizing his outstanding academic performance and research contributions.

Research Focus:

Mr. Zema’s research interests encompass a range of topics within thermal engineering, including Thermal Plume Analysis, Numerical Simulation, Heat Transfer Modeling, Thermodynamics, and Computational Fluid Dynamics (CFD). His work also extends to HVAC/R systems, nanotechnology, and Finite Element Methods, with a keen interest in simulation and modeling techniques.

Conclusion:

Prof. Fahrettin Ozturk is a standout candidate for the Best Researcher Award due to his comprehensive background in both academic and industrial research. His contributions to mechanical engineering through innovative research, substantial leadership in aerospace technology, and dedication to mentoring and collaboration demonstrate his profound impact on the field. His extensive list of awards and honors further supports his eligibility for this prestigious award.

Publications :

Numerical Study of a Thermal Plume Developing in a Neutral Environment and in Interaction: Application to Fires Problems” – Journal of Scientific Research and Reports

“Design and Computational Fluid Dynamics Analysis of a Fume Extraction System for a Welding Company in Guyana” – Journal of Scientific Research and Reports

“A Review of Recent Studies on Both Heat Pipes and Evaporative Cooling in Passive Heat Recovery” – Open Engineering
“Flow Simulation and Performance Analysis of Centrifugal Compressor using CFD_Tool” – JUSST

“A 3-D Numerical Investigation and Parametric_CFD_Analysis of Flow through C-D Nozzle using Ansys_cfx” – DOI: 10.51201/JUSST/22/0162
“Design and Simulation of Shell-and-Tube Heat Exchanger (STHE) with the Effect of Baffles using CFD-tool” – DOI: 10.47191/etj/v8i5.02

“Experimental Investigation on Performance Enhancement of Vapor Compression Refrigeration (VCR) Systems using Nano-Refrigerant [R-134a + ZrO2] at Steady-State” – Springer