Ali Reza Keivanimehr | AI in healthcare | Best Researcher Award

Mr.Ali Reza Keivanimehr | AI in healthcare
| Best Researcher Award

Mr.  Ali RezaKeivanimehr ,  Amirkabir University of Technology (Tehran’s Polytechnic), Iran.

Ali Reza Keivanimehr is an exceptional early-career researcher with a solid academic foundation, a promising research trajectory in machine learning applications for healthcare, and strong technical expertise. His combination of research, teaching, and technical projects highlights a well-rounded profile. His contributions, especially in the use of TinyML for cardiovascular diagnosis, are commendable and align with global health priorities.

Publication Profile

Google scholar

Education :

Master of Science in Information Technology Engineering – Internet of Things (IoT) (2022 – 2025)Amirkabir University of Technology (Tehran Polytechnic), Tehran, IranRanked 403rd in QS World University Rankings 2024GPA: 3.53/4 (17.48/20) – 3rd highest in 2022 faculty entranceThesis: Applications of TinyML in Prediction and Diagnosis of Cardiovascular DiseasesSupervisor: Dr. Mohammad Akbari | Advisor: Dr. Abbas AhmadiBachelor of Science in Computer Engineering – Software Engineering (2018 – 2021)Imam Khomeini International University of Qazvin, Qazvin, IranProject: Designing a Software Interface for Industrial Machinery Maintenance

Experience :

Research Assistant (2022 – Present)
Data Science Lab (DSLab), Amirkabir University of Technology, Tehran, IranConducting research on TinyML and edge intelligence applications in cardiovascular disease prediction.Teaching Assistant — Machine Learning and Pattern Recognition (2024 – 2025)Amirkabir University of Technology, Tehran, IranAssisted in course instruction, project supervision, and student evaluations under Dr. Alireza Rezvanian.Teaching Assistant — Data Structure and Algorithms (2019 – 2020)
Imam Khomeini International University of Qazvin, Qazvin, IranSupported coursework delivery, assignments, and exam preparations under Morteza Mohammadi Zanjireh.

Research Focus :

Natural Language Processing (NLP)Graph Neural NetworksEdge IntelligenceExplainable Artificial Intelligence (XAI)Generative Adversarial Networks (GANs)Dr. Keivanimehr’s research centers on Tiny Machine Learning (TinyML) and edge intelligence, with a specific emphasis on their applications in cardiovascular disease monitoring. He explores the deployment of machine learning models on low-power, resource-limited devices to facilitate real-time analytics and pervasive monitoring for patients with cardiac anomalies.

Skills and Expertise:

As a research assistant, Dr. Keivanimehr has developed expertise in machine learning, classification, and supervised learning. His technical proficiency includes a focus on computational health and biomedical applications, particularly in the context of resource-constrained devices.Programming: PythonMachine Learning Frameworks: PyTorch, TensorFlowBig Data Tools: Apache SparkLanguages: TOEFL iBT (Score: 109 | Reading: 28 | Listening: 30 | Speaking: 26 | Writing: 25)

Awards:

 

48th Rank among 5000+ participants, National Entrance Exam for Master Studies in IT Engineering (2022)3rd Rank in IT Engineering Master’s cohort based on GPA (2022 – Present)Full Master’s Scholarship: Awarded for excellence in national entrance exams; covers tuition, dormitory, and partial food expenses (2022 – Present)Full Bachelor’s Scholarship: Granted for top performance in national entrance exams; included tuition, accommodation, and meal support (2018 – 2021)

 

Publication 

 

  • Keivanimehr, A., & Akbari, M. (2024). TinyML and Edge Intelligence Applications in Cardiovascular Disease: A Survey. Computers in Biology and Medicine. DOI: 10.1016/j.compbiomed.2025.109653

 

Conclusion

Ali Reza Keivanimehr is a suitable candidate for the Best Researcher Award. His strong academic record, impactful research, and consistent growth in machine learning and edge intelligence demonstrate his potential as a leading researcher in his field. With further international exposure and expanded publication efforts, he is poised to make significant contributions to both academia and industry.

 

Saba Inam | machine learning | Women Researcher Award

Dr.Saba Inam |machine learning| Women Researcher Award

Dr Saba InamFatima Jinnah women university, The Mall, Rawalpindi, Pakistan.

Dr. Saba Inam is a lecturer in the Department of Mathematical Sciences at Fatima Jinnah Women University in Rawalpindi, Pakistan. She earned her PhD in Algebraic Cryptography from the Capital University of Science and Technology, completing her studies between February 2014 and January 2019. Her research interests include Algebraic Number Theory, Algebraic Cryptography, Applied Cryptography, image encryption, Cloud Computing, Machine Learning, and Deep Learning. Dr. Inam has contributed to over 20 publications, accumulating 247 citations, and her work has garnered more than 3,367 reads. Notably, she co-authored the article “An efficient image encryption algorithm using 3D-cyclic Chebyshev map and elliptic curve,” published in November 2024.

Publication Profile

Google Scholar

Orcid

Education :

Dr. Saba Inam holds a PhD in Mathematics from Capital University of Science and Technology (CUST), Islamabad (2019). She completed her MS in Mathematics from COMSATS Institute of Information Technology, Islamabad, in 2007 with a CGPA of 3.6/4, achieving 1st Division. She earned her M.Sc. in Mathematics from Quaid-i-Azam University, Islamabad (2005), and her B.Sc. in Mathematics (Maths A, Maths B, Stats) from the University of the Punjab (2003), both with 1st Division.

Experience :

Dr. Inam has extensive academic and research experience. Since September 2007, she has been serving as a Lecturer in Mathematics at Fatima Jinnah Women University, Rawalpindi. She also held the position of Incharge, Department of Mathematical Sciences from August 2016 to January 2018. Before that, she worked as a Research Associate at COMSATS Institute of Information Technology, Islamabad, from March to August 2007.

Research Focus :

Dr. Inam’s research interests span across multiple domains, including:

Cryptography & Security: Algebraic Cryptography, Cryptology, CryptanalysisAI & Data Security: Image Encryption, Blockchain, IoT, Deep Learning, Machine LearningMathematical Sciences: Fluid Mechanics, Geometric Function Theory.

 

Awards:

Dr. Inam’s academic excellence has been recognized through various awards and honors:

Scholarship – Capital University of Science and Technology (CUST), Islamabad (2013-2018)Dean’s Roll of Honor – Received twice during PhD courseworkDiploma in Academic Excellence in Discrete Mathematics – Abdul Salam School of Mathematical Sciences, GC University, Lahore (2012)Scholarship – COMSATS Institute of Information Technology, Islamabad (2005-2007)

Skills:

Dr. Inam possesses expertise in:Programming & Computational Tools: Matlab, Python, Mathematica, APCoCoA, Scientific Workplace, LaTeXOffice & Documentation: Proficient in Microsoft Office Suite,Dr. Saba Inam continues to contribute significantly to the fields of cryptography, image encryption, and mathematical security frameworks, with a strong focus on deep learning and blockchain applications.

Publication :